Part I: (30 Points) Problems 1-4: Complete the following problems.

1. (10 POINTS)
a. (8 POINTS) Find the $2^{\text {nd }}$ degree Taylor polynomial for $f(x)=x^{2} \sin x$, centered at $\frac{\pi}{2}$.

$$
\begin{aligned}
& f(x)=x^{2} \sin x \\
& f^{\prime}(x)=2 x \sin x+x^{2} \cos x \\
& f^{\prime \prime}(x)=2 \sin x+2 x \cos x+2 x \cos x-x^{2} \sin x \\
& f^{\prime \prime}(x)=2 \sin x+4 x \cos x-x^{2} \sin x \\
& P_{2}(x)=\frac{\pi^{2}}{4}+\pi\left(x-\frac{\pi}{2}\right)+\frac{8-\pi^{2}}{2!4}\left(x-\frac{\pi}{2}\right)^{2} \\
& P_{2}(x)=\frac{\pi^{2}}{4}+\pi\left(x-\frac{\pi}{2}\right)+\frac{8-\pi^{2}}{8}\left(x-\frac{\pi}{2}\right)^{2}
\end{aligned}
$$

b. (2 POINTS) Use your result from part a to approximate $f\left(\frac{3 \pi}{8}\right)$

$$
\begin{aligned}
f\left(\frac{3 \pi}{8}\right) & \approx p_{2}\left(\frac{3 \pi}{8}\right) \\
& =\frac{\pi^{2}}{4}+\pi\left(\frac{3 \pi}{8}-\frac{\pi}{2}\right)+\frac{8-\pi^{2}}{8}\left(\frac{3 \pi}{8}-\frac{\pi}{2}\right)^{2} \\
& =1.1977
\end{aligned}
$$

2. (10 POINTS)
a. (8 POINTS) Find the $4^{\text {th }}$ degree Maclaurin polynomial for $f(x)=\frac{1}{x+1}$.

$$
\begin{array}{ll}
f(x)=(x+1)^{-1} & f(0)=1 \\
f^{\prime}(x)=-(x+1)^{-2} & f^{\prime}(0)=-1 \\
f^{\prime \prime}(x)=2(x+1)^{-3} & f^{\prime \prime}(0)=2 \\
f^{\prime \prime \prime}(x)=-6(x+1)^{-4} & f^{\prime \prime \prime}(0)=-6 \\
f^{(4)}(x)=24(x+1)^{-5} & f^{(4)}(0)=24 \\
P_{4}(x)=1-x+\frac{2 x^{2}}{2!}-\frac{6 x^{3}}{3!}+\frac{24 x^{4}}{4!} \\
P_{4}(x)=1-x+x^{2}-x^{3}+x^{4}
\end{array}
$$

b. (2 POINTS) Use your result from part a to approximate $f\left(\frac{1}{4}\right)$

$$
\begin{aligned}
f\left(\frac{1}{4}\right) & \approx P_{4}(x) \\
& =1-\frac{1}{4}+\left(\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{4} \\
& =0.8008
\end{aligned}
$$

3. (6 POINTS) Find the radius of convergence and the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} n!(x-5)^{n}}{3^{n}}$.
Rato Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+1)!(x-5)^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{(-1)^{n} n!(x-5)^{n}}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(n+1) n!(x-5)}{3 n!}\right|
$$

Radius of convergence is 0 . Interval of convergence is $\{5\}$.

$$
=\infty
$$

4. (4 POINTS) Write a series which is equivalent to $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ with the index of summation starting at 1.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\frac{1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots}{\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}}
\end{aligned}
$$

Part II: (25 points) Problems 5-6. Find a geometric power series for the function, centered at c, and determine the interval of convergence.
5. (10 POINTS) $f(x)=\frac{4}{8-x}, c=2$

$$
\begin{aligned}
\frac{4}{8-x} & =\frac{4}{8-2-(x-2)} \\
& =\frac{4 / 6}{\frac{6}{6}-\frac{(x-2)}{6}} \\
& =\frac{2 / 3}{1-\frac{x-2}{6}} \\
& =\sum_{n=0}^{\infty} \frac{2}{3}\left(\frac{x-2}{6}\right)^{n},-4<x<8
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r},|r|<1
$$

$$
\begin{aligned}
& 1.0 . C \\
& \left|\frac{x-2}{6}\right|<1 \\
& -1<\frac{x-2}{6}<1 \\
& -6<x-2<6 \\
& -4<x<8
\end{aligned}
$$

6. (15 POINTS) $f(x)=\frac{4 x}{x^{2}+2 x-3}, c=0$

$$
\begin{aligned}
& \frac{4 x}{(x+3)(x-1)}=\frac{A}{x+3}+\frac{B}{x-1}=\frac{3}{x+3}+\frac{1}{x-1} \\
& 4 x=A(x-1)+B(x+3) \\
& 4 x=A x-A+B x+3 B \\
& 4 x+0=(A+B) x+(-A+3 B)
\end{aligned}
$$

$$
A+B=4
$$

$$
-A+3 B=0
$$

$$
4 B=4
$$

$$
B=1
$$

so $A=3$

$$
\begin{aligned}
\frac{3 / 3}{\frac{3}{3}+\frac{x}{3}} & =\frac{1}{1+\frac{x}{3}} \\
& =\frac{1}{1-\left(-\frac{x}{3}\right)} \\
& =\sum_{n=0}^{\infty}\left(-\frac{x}{3}\right)^{n},-3<x<3
\end{aligned}
$$

$$
\frac{1}{x-1}=\frac{1 /-1}{\frac{-1}{-1}+\frac{x}{-1}}
$$

$$
=\frac{-1}{1-x}
$$

$$
=-\frac{1}{1-x}
$$

So,

$$
\begin{aligned}
\frac{3}{3+x}+\frac{1}{x-1} & =\sum_{n=0}^{\infty}\left(-\frac{x}{3}\right)^{n}-\sum_{n=0}^{\infty} x^{n}=-\sum_{n=0}^{\infty} x^{n},-1<x<1 \\
& =\sum_{n=0}^{\infty}\left[\left(-\frac{1}{3}\right)^{n}-1\right] x^{n},-1<x<1
\end{aligned}
$$

Part III: (15 points) Problem 7. Use the definition of Taylor series to find the Taylor series for the function, centered at c. Be sure to find the interval of convergence and test the endpoints. You may not use a series known from a list. Hint: you may need to integrate or differentiate.

$$
\begin{aligned}
& \text { 7. } f(x)=\frac{1}{1-x}, c=2 \\
& f(x)=(1-x)^{-1} \\
& f(2)=-1 \\
& f^{\prime}(x)=-(1-x)^{-2}(-1)=(1-x)^{-2} \\
& f^{\prime}(z)=1 \\
& f^{\prime \prime}(x)=-2(1-x)^{-3}(-1)=2(1-x)^{-3} \\
& f^{\prime \prime}(2)=-2 \\
& f^{\prime \prime \prime}(x)=-3 \cdot 2(1-x)^{-4}(-1)=3.2(1-x)^{-4} \\
& f^{\prime \prime \prime}(2)=3.2 \\
& f^{(4)}(x)=-4 \cdot 3 \cdot 2(1-x)^{-5}(-1)=4 \cdot 3 \cdot 2(1-x)^{-5} \quad f^{(4)}(2)=-4 \cdot 3 \cdot 2 \\
& \frac{1}{1-x}=-1+1(x-2)-\frac{2(x-2)^{2}}{2!}+\frac{3 \cdot 2(x-2)^{3}}{3!}-\frac{4 \cdot 3 \cdot 2(x-2)^{4}}{4!}+\cdots \\
& \frac{1}{1-x}=-1+(x-2)-(x-2)^{2}+(x-2)^{3}-(x-2)^{4}+\cdots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty}(-1)^{n+1}(x-2)^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1+1}(x-2)^{n+1}}{(-1)^{n+1}(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|x-2|<1 \rightarrow 1<x<3 \\
& \text { Test } x=3 \text { : } \\
& \left.\sum_{n=0}^{\infty}(-1)^{n+1}(1)^{n}=\sum_{n=0}^{\infty}(-1)^{n+1} \quad \begin{array}{l}
\text { diverges by } \\
\text { nth term test }
\end{array}\right]
\end{aligned}
$$

Part IV: (30 points /15 points each) Problems 8-9. Solve the following problems as indicated. You do not need to find the interval of convergence.
8. Use the binomial series

$$
(1+x)^{k}=1+k x+\frac{k(k-1) x^{2}}{2!}+\frac{k(k-1)(k-2) x^{3}}{3!}+\frac{k(k-1)(k-2)(k-3) x^{4}}{4!}+\cdots
$$

to find the Maclaurin series for the function $f(x)=\frac{1}{(1+x)^{4}}$.

$$
\begin{aligned}
& f(x)=(1+x)^{-4}, k=-4 \\
& (1+x)^{-4}=1-4 x+\frac{(-4)(-5) x^{2}}{2!}+\frac{(-4)(-5)(-6) x^{3}}{3!}+\frac{(-4)(-5)(-6)(-7) x^{4}}{4!} \cdots \\
& (1+x)^{-4}=1-4 x+\frac{5 \cdot 4 x^{2}}{2!}-\frac{6 \cdot 5 \cdot 4 x^{3}}{3!}+\frac{7 \cdot 65 \cdot 4 x^{4}}{4!} \cdots \\
& (1+x)^{-4}=1-4 x+\frac{(-1)^{2} \cdot 5!x^{2}}{3!2!}+\frac{(-1)^{3} 6!x^{3}}{3!3!}+\frac{(-1)^{4} 7!x^{4}}{3!4!} \cdots \\
& (1+x)^{-4}=\frac{(-1) 3!x^{0}}{3!0!}+\frac{(-1)^{1} 4!x^{1}}{3!1!}+\frac{(-1)^{2} 5!x^{2}}{3!2!}+\frac{(-1)^{3} 6!x^{3}}{3!3!}+\frac{(-1)^{4} 7!x^{4}}{3!4!}+\cdots \\
& (1+x)^{-4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+3)!x^{n}}{3!n!}
\end{aligned}
$$

9. Use the series $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots$ to find the Maclaurin series for the function $f(x)=x \sin x$.

$$
\begin{aligned}
& f(x)=x \sin x \\
& f(x)=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& f(x)=x\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right] \\
& f(x)=x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\cdots \\
& f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+1)!}
\end{aligned}
$$

